ISTI-CNR at SemEval-2016 Task 4: Quantification on an Ordinal Scale

نویسنده

  • Andrea Esuli
چکیده

This paper details on the participation of ISTICNR to task 4 of Semeval 2016. Among the five subtasks, special attention has been paid to the five-point scale quantification subtask. The quantification method we propose is based on the observation that a standard document-by-document regression method usually has a bias towards assigning high prevalence labels. Our method models such bias with a linear model, in order to compensate it and to produce the quantification estimates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QCRI at SemEval-2016 Task 4: Probabilistic Methods for Binary and Ordinal Quantification

We describe the systems we have used for participating in Subtasks D (binary quantification) and E (ordinal quantification) of SemEval-2016 Task 4 “Sentiment Analysis in Twitter”. The binary quantification system uses a “Probabilistic Classify and Count” (PCC) approach that leverages the calibrated probabilities obtained from the output of an SVM. The ordinal quantification approach uses an ord...

متن کامل

INSIGHT-1 at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification and Quantification

This paper describes our deep learning-based approach to sentiment analysis in Twitter as part of SemEval-2016 Task 4. We use a convolutional neural network to determine sentiment and participate in all subtasks, i.e. two-point, three-point, and five-point scale sentiment classification and two-point and five-point scale sentiment quantification. We achieve competitive results for two-point sca...

متن کامل

SemEval-2016 Task 4: Sentiment Analysis in Twitter

This paper describes the fifth year of the Sentiment Analysis in Twitter task. SemEval-2017 Task 4 continues with a rerun of the subtasks of SemEval-2016 Task 4, which include identifying the overall sentiment of the tweet, sentiment towards a topic with classification on a twopoint and on a five-point ordinal scale, and quantification of the distribution of sentiment towards a topic across a n...

متن کامل

YZU-NLP Team at SemEval-2016 Task 4: Ordinal Sentiment Classification Using a Recurrent Convolutional Network

Sentiment analysis of tweets has attracted considerable attention recently for potential use in commercial and public sector applications. Typical sentiment analysis classifies the sentiment of sentences into several discrete classes (e.g., positive and negative). The aim of Task 4 subtask C of SemEval-2016 is to classify the sentiment of tweets into an ordinal five-point scale. In this paper, ...

متن کامل

GTI at SemEval-2016 Task 4: Training a Naive Bayes Classifier using Features of an Unsupervised System

This paper presents the approach of the GTI Research Group to SemEval-2016 task 4 on Sentiment Analysis in Twitter, or more specifically, subtasks A (Message Polarity Classification), B (Tweet classification according to a two-point scale) and D (Tweet quantification according to a two-point scale). We followed a supervised approach based on the extraction of features by a dependency parsing-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016